PHYSICAL REVIEW E VOLUME 58, NUMBER 1 JULY 1998

Hard-sphere statistics along the metastable amorphous branch
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Using simulation techniques that we discussed in a previous work, we create random dense hard-sphere
systems above the freezing poiie., along the metastable brana@nd measure key quantities that charac-
terize the structure for such high densities. These include certain statistics of the void space, nearest-neighbor
statistics, and the mean coordination number. Our numerical results turn out to be generally in very good
agreement with recent theoretical predictigf&1063-651X98)07707-1

PACS numbdss): 61.20—p

I. INTRODUCTION freezing pointe;~0.494 and represents the stable fl(ds-
ordered phase. A tie line representing a mixed ordered and

Dense systems of randomly packed hard spheres hawiisordered phase joins the freezing point and the melting
been the subject of much study recently. This is due in parpoint ¢,,=~0.545. Above the melting point, the system is in a
to its usefulness as a model of such physical systems grystalline phase that ends at a close-packed face-centered
simple liquids[1], glasse$2], colloidal dispersions, and par- cubic at$~0.74. However, the random dense hard-sphere
ticulate composite§3]. Since the short-range repulsion be- phase is not represented by any of these lines, but instead is
tween particles in dense systems generally determines trfemetastable extension of the fluid branch that extends past
structure, the hard-sphere model turns out to approximatéhe freezing point, and is conjectured to end at the random
well the structure of such systems even when interparticlglose-packing(RCP state ¢.~0.644. Roughly speaking,
attraction is present. The hard-sphere system is also appedite RCP state is the densest possible random padkieey
ing since, despite its simplicity and much theoretical andRef.[9] for a more precise definitignThere is a complete
computational work, many open questions remain regardingange of partially disordered states that a hard-sphere system
the structure over the full density range. can be in, both equilibrium and nonequilibrium, but current

One of the primary difficulties in studying dense randomstudies of dense random hard-sphere systems are primarily
hard-sphere systems is that of determining whether the sysoncerned with the metastable extension of the fluid branch.
tems are truly random. Berng#f] was one of the first to In the context of the hard-sphere phase diagram, one can
study such a system via physical experiment, in which plassee that the fundamental problem in creating metastable
ticene spheres were compressed together in order to get geénse systems is to ensure that the system is truly random.
effective “Voronoi tessellation” of the random-sphere sys- Unfortunately, there is no perfect measure of order or disor-
tem. He also used an actual “ball and stick” approach modeper in a system, and systems were generally thought to be
to study the system. The practical difficulties inherent indisordered as long as the the radial distribution function did
these methods make them of limited general use. Fifiigy not begin to show clear signs associated with a fcc crystal.
carried out some of the first Monte Carlo calculations toHowever, we showed in previous worKlO] that small
study dense hard-sphere systems. Almost all early techniques
were based around the Voronoi approach, but they also fo- 31
cused on the radial distribution function as a means of deter- ToRCPy 4 (Tc;:scec

: Packed)

mining randomness. This was based on the difference be-
tween the radial distribution function of the crystalline and Metastable _ , -
random systems. branch ;o

There has also been much work done on so-called “depo-
sition models,” in which spheres are deposited sequentially
onto a random surface according to some given f@leln
general, such methods produce dense random systems, but
do not have the same characteristics that are associated with
systems in which the particles are not “locked into place.”
Moreover, deposition models do not produce packings that
are as dense as algorithms that allow particle movement
[7,8].

As the hard-sphere system was studied, the thermodynam-
ics of the system was emphasized and its complete phase =
diagram was investigated with the help of numerical simula-
tions. In Fig. 1, one can see that there are four main branches
in the phase diagram. The first branch goes fidmO to the FIG. 1. Phase diagram for the hard-sphere system.
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amounts of crystallization, which were imperceptible to thethe hard-sphere system and were originally used in scaled-
radial distribution function, can indeed affect the physicalparticle theory to determine the system thermodynamics
properties, such as pressure, in the system. [12]. UsingHy(r), we will also calculate the mean pore size

In order to quantify the degree of local ordéisordey in (68) and associated fluctuations. Such pore length scales de-
the system, we borrowed the concept of an order parametégrmine transport properties of the systems, such as the mean
Qg from Steinhart, Nelson, and Roncheltlil]. The order survival time of Brownian particles diffusing in a system of
parameteQg corresponds to a rotationally invariant averagetraps[13]. We emphasize that this, to our knowledge, is the
over all bonds, which is nonzero in the presence of any typdéirst computer simulation of these quantities above the freez-
of crystallization, and zero for a completely disordered sysing point, along the metastable branch. Finally, we will cal-
tem. By monitoring the behavior d®g to ensure that no culate the first and second moments of the particle nearest-
crystallites were forming, we were able to both equilibrateneighbor functions as well as an effective mean coordination
our hard-sphere systems and be assured that they remainedmber associated with these dense packings. The latter
random. We suspect that many previous studies that aguantities are key in characterizing the system as it ap-
tempted to produce random packings of spheres solely basguoaches the RCP state. We will also use our simulation
on the radial distribution function may well contain crystal- results to compare to previous theoretical predicti@h$4)].
lites. In Sec. Il we precisely define the void nearest-neighbor

Using the aforementioned concept of an order parameteguantitiesg,(r) and Hy(r), and calculate them as well as
to characterize hard-sphere systems, we found a precidewer-order moments using computer-simulation techniques.
guantitative means of creating dense random hard-spher@hey are then compared to theoretical expressions. We dis-
systems that correspond to the metastable amorphous branchiss and compute the particle nearest-neighbor statistics in
of the phase diagraifil0], which heretofore had been lack- Sec. lll, such as the mean nearest-neighbor distance and as-
ing. We were then able to establish a number of new resultsociated variance, and the mean coordination number. Fi-
related to dense metastable hard-sphere systems. These mally, in Sec. IV we make concluding remarks.
sults include precise values of the pressure along the branch,

a precise valu_e of random close packhﬁg_(~0.644), an_o! a Il. VOID STATISTICS
lack of the existence of a thermodynamic glass transition.

In this paper, we use the same techniques to create denseIn what follows, we consider a statistically isotropic dis-
random hard-sphere systems and measure key statistidaibution of identical hard spheres of diameterLet ¢ rep-
properties of these systems. First, we calculate the voidesent the volume fraction of the spheres. The void nearest-
nearest-neighbor distribution functiors,(r) and Hy(r). neighbor quantitiesl\(r) andE/(r) have been extensively
These two functions describe the geometry of the cavities istudied[12,14] and are defined as follows:

Hy(r)dr=probability that at an arbitrary point in the system, the center of the nearest particle,
lies at a distance between and r +dr. 1)
E(r)= probability of finding a region that is a circular cavity of radius

r (centered at some arbitrary poinempty of disk centers. 2

The quantityH,,(r) can be interpreted as being the interfa- The two quantitiedd,(r) andE,(r) are not independent,
cial area per unit volume of a system of possibly overlappingout are related by the expression

spheres of radius centered at each of the actual sphere

centers. SimilarlyEy,(r) has the interpretation of the volume r

fraction of space occupied by a system of possibly overlap- Ev(r)=1- JO Hy(x)dx. (5)
ping spheres of radiuscentered at each of the actual sphere

terms ofH\, [13] according to the relation that
Hy(6— a/2) 4ar
P(5)=T- 3 Ev(r)=1-p——, 0=r=<o/2, (6)
Then, the mean pore-size distributi¢f), and higher-order and
moments can be defined by
HV(r):p477r2, osr=ogl/2, (7)

n\ — n
(0 >_f d"P()da. ) wherep is the number density of particles.
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FIG. 2. Comparison of the simulations Bf,(r) andH,(r) to
the theoretical expressioli$2) and(13) for ¢=0.56.
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FIG. 4. Comparison of the simulations Bf,(r) andH(r) vs
scaled distance/ o to the theoretical expressioft2) and(13) for
$=0.63.

Torquato[9] has obtained an accurate analytical approxi- _ _
mation for the intimately related conditional nearest-andx=r/c. The corresponding expressions féy(x) and
neighbor functionG,(r) [14] for volume fractions up to the Hy(X), using the exact interrelatiori44], are given by

freezing point:

Gy =agt 24 22 8
v(X)=ag x e (8)
where
1+ ¢+ p>— ¢*
Bg=——————— ©
(1-¢)
#(3p*—4¢—3)
a=———————, (10
2(1-¢)
d*(2— )
=7 (11
2(1-¢)
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FIG. 3. Comparison of the simulations Bf,(r) andH(r) vs
scaled distance/ o to the theoretical expressiof$2) and(13) for
¢»=0.60.

Ev(X)=(1— ¢)exf — ¢(8apx®+12a,x>+ 24a,x+az)],

(12)
Hy(X)=244(1— ¢)(agx®+ a;x+a,)exyg — ¢(8apx®
+12a;x%+ 24a,x+ag)], (13
where
az;=—(ap+3a;+12a,). (14

As observed by Torquatf®8], the void nearest-neighbor
functions are fundamentally different than the “particle”
nearest-neighbor functionglescribed in the next sectipn
since the former, unlike the latter, do not vanish or diverge at
the RCP state. This implies that the functional nature of the
particle quantities below and above the freezing density must
be different[9]. Since the void quantities are nonsingular at
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FIG. 5. Comparison of the simulations of the dimensionless
mean pore siz€5)/o vs scaled distance/s to the theoretical
expression(4), with n=1 andH, given by Eq.(13), for several
values of¢.
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FIG. 6. Comparison of the simulations of the dimensionless sec- FIG. 7. Comparison of the simulations of the dimensionless
ond moment of the pore-size distributi¢a?)/o? to the theoretical mean nearest-neighbor distarieg/ o to the theoretical expression
expression(4), with n=2 andH, given by Eq.(13), for several  (16), with n=1 andH given by Eq.(17), for several values of.
values of¢.

RCP, it seems reasonable that by analytically continuing th&igure 4 shows that even &t=0.63, a value very close to
expressiongs), (12), and(13) above the freezing point, they random close_ pgpklng, the theoretical expressions d.o not
may provide useful estimates of the void quantities along th@reak down significantly, in contrast to previous predlcuqns.
metastable branch. This ansatz will be tested against our The data forH,(r) were used to calculate the pore-size
simulation results. distribution P(5), and the mean pore sizg5) and mean

Simulations to determiné,(r) and Hy(r) were per- Pore-size fluctuation$s?) were cal_culqted fronP(5). The
formed at various volume fractions between the freezingnoments(d) and(é?) are plotted in Figs. 5 and 6, respec-
point (¢;=0.494) and random close packing{=0.644) tively, and are compared to the theorgtlcal predictions as
by creating the systems using the techniques described in ogPMputed from Eqs(3), (4), and(13). Noting the scales of
earlier paper$10]. The volume and area for various values the figures, the theoretical predictions are seen to be in ex-
of r was then determined using the algorithm specified bysellent agreement with the simulation data.

Dodd and Theodoro({il5], with minor performance modifi-
cations. Each simulation was performed on 2000-particle
systems using periodic boundary conditions.

The resulting plots ofEy(r) and Hy(r) compared to The particle nearest-neighbor quantitiés(r) andEp(r)
theory are shown in Figs. 2—4. The first plot, which depictsare similar to the void nearest-neighbor quantities, but in-
the results for¢=0.56, shows extremely close agreementstead of the reference point as an arbitrary point in the sys-
with theory. However, the data in Fig. 3 also shows verytem, it is a particle centdd4]. Specifically,Hp(r) is defined
good agreement with theory at the higher valuepef0.60. as

Ill. PARTICLE NEAREST-NEIGHBOR STATISTICS

Hp(r)dr=probability that at an arbitrary particle center in the system,

the center of the nearest particle, lies at a distance betweand r +dr. (15

This is just the distribution of nearest-neighbor distances.  Hy(r)=24¢(agx?+a;x+a,)exp{— ¢[8ay(x>—1)
From this quantity, one can define the mean nearest-neighbor

distance(r) and its higher moments as +12a;(x*—1)+24a(x— 1)} (x=1), (17
where
(r“>=JO r"Hp(r)dr. (16 ) (o d0)
ao—1+4¢9f(1)w, (18)

A theoretical approximation foHp(r) from the freezing 364 (o)
point ¢; to RCP ¢, was explicitly given by Torquato in Eq. +2(1-3¢)gs(1) ¢~ Pt (19

(43) of Ref. [9], which states that 721 ¢) (=)
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FIG. 8. Comparison of the simulations of the dimensionless sec- FIG. 9. Coordination numbeaverage number of neighboring

ond moment(rz)la2 to the theoretical expressidid6), with n=2 sphere cente)_sas a functlc_m of dlstance_ f0¢:O.63_. Note the
) sharp change in the behavior of the function at a point correspond-
andHp given by Eq.(17), for several values of.

ing to about six neighbors.

2—¢ (de— b4) N,(o)=0 for all values used in this simulation, we can plot
:m +(2¢- 1)9f(1)w' (20 N,(r) for values close ter to get an idea of what a reason-
able value for the coordination number should be. Figure 9
and g¢(1)=(1— ¢¢/2)/(1— ¢;)° denotes the contact value Shows the results fop=0.63, very close to RCP. We see a
of the radial distribution function at the freezing packing Very sharp rise up to a value of approximately six, and then
fraction ¢;=0.494. a slow rise to slightly higher values. This implies that each

In general, it is much more difficult to get the entire dis- Particle has six neighbors a very short distance awamte
tribution of particle nearest-neighbor quantities than the voidhe scale in Fig. Bcorresponding to an approximate coordi-
nearest-neighbor quantities. This is due to the fact that theation number of six. Ash— ¢, it is expected thalN,(r)
sampling for the particle quantities is limited to the numberWwill plateau even faster after the initial steep rise. It is well
of particles in your system, while there are effectively anknown experimentally that the coordination number of
infinite number of void points to sample from. Because offandom-sphere packings is approximately [Sif].
this, we will concentrate on the first and second moments of
Hp(r), and not the entire function.

In Fig. 7 we compare the mean nearest-neighbor distance
(r), obtained from our simulations to the one computed from  Theoretical predictions for nearest-neighbor void and par-
Egs.(16) and(17) for various values of the volume fraction ticle statistics along the metastable amorphous branch are
¢. Here we see that the values lie very close to the approxishown to be very accurate when compared to computer
mation given by Eq(16) with n=1. Similarly, Fig. 8 gives simulations, even at values close to RCP. This is in contrast
corresponding results for the second momént). The  with many previous theoretical predictions of hard-sphere
agreement with theorfEq. (16) with n=2 and Eq.(17)] is  systems that tend to break down at higher densities. We note
also quite good. that the void statistics, while somewhat more geometrically

For a hard-sphere system in equilibrium, the coordinatiorcomplicated than the particle statistics, are easier to measure
number(average number of interparticle contadgssstrictly  than the particle quantities. Finally, we have shown that as
zero except at the RCP stafeherefore, we instead compute dense random hard-sphere systems approach the RCP state,
the mean number of neighboks,(r), whereN,(r) is de- the coordination number tends toward a limiting value of
fined as the mean number of sphere centmrated within a  approximately six, consistent with experimental measure-
distance r from a random sphere centdeven though ments on random-sphere packings.

az
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