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Hard-sphere statistics along the metastable amorphous branch

M. D. Rintoul and S. Torquato
Princeton Materials Institute and Department of Civil Engineering and Operations Research,

Princeton University, Princeton, New Jersey 08540
~Received 10 March 1998!

Using simulation techniques that we discussed in a previous work, we create random dense hard-sphere
systems above the freezing point~i.e., along the metastable branch! and measure key quantities that charac-
terize the structure for such high densities. These include certain statistics of the void space, nearest-neighbor
statistics, and the mean coordination number. Our numerical results turn out to be generally in very good
agreement with recent theoretical predictions.@S1063-651X~98!07707-1#

PACS number~s!: 61.20.2p
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I. INTRODUCTION

Dense systems of randomly packed hard spheres h
been the subject of much study recently. This is due in p
to its usefulness as a model of such physical system
simple liquids@1#, glasses@2#, colloidal dispersions, and par
ticulate composites@3#. Since the short-range repulsion b
tween particles in dense systems generally determines
structure, the hard-sphere model turns out to approxim
well the structure of such systems even when interpart
attraction is present. The hard-sphere system is also ap
ing since, despite its simplicity and much theoretical a
computational work, many open questions remain regard
the structure over the full density range.

One of the primary difficulties in studying dense rando
hard-sphere systems is that of determining whether the
tems are truly random. Bernal@4# was one of the first to
study such a system via physical experiment, in which p
ticene spheres were compressed together in order to ge
effective ‘‘Voronoi tessellation’’ of the random-sphere sy
tem. He also used an actual ‘‘ball and stick’’ approach mo
to study the system. The practical difficulties inherent
these methods make them of limited general use. Finney@5#
carried out some of the first Monte Carlo calculations
study dense hard-sphere systems. Almost all early techni
were based around the Voronoi approach, but they also
cused on the radial distribution function as a means of de
mining randomness. This was based on the difference
tween the radial distribution function of the crystalline a
random systems.

There has also been much work done on so-called ‘‘de
sition models,’’ in which spheres are deposited sequenti
onto a random surface according to some given rule@6#. In
general, such methods produce dense random systems
do not have the same characteristics that are associated
systems in which the particles are not ‘‘locked into place
Moreover, deposition models do not produce packings
are as dense as algorithms that allow particle movem
@7,8#.

As the hard-sphere system was studied, the thermodyn
ics of the system was emphasized and its complete p
diagram was investigated with the help of numerical simu
tions. In Fig. 1, one can see that there are four main branc
in the phase diagram. The first branch goes fromf50 to the
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freezing pointf f'0.494 and represents the stable fluid~dis-
ordered! phase. A tie line representing a mixed ordered a
disordered phase joins the freezing point and the mel
point fm'0.545. Above the melting point, the system is in
crystalline phase that ends at a close-packed face-cen
cubic atf'0.74. However, the random dense hard-sph
phase is not represented by any of these lines, but inste
a metastable extension of the fluid branch that extends
the freezing point, and is conjectured to end at the rand
close-packing~RCP! state fc'0.644. Roughly speaking,
the RCP state is the densest possible random packing~see
Ref. @9# for a more precise definition!. There is a complete
range of partially disordered states that a hard-sphere sy
can be in, both equilibrium and nonequilibrium, but curre
studies of dense random hard-sphere systems are prim
concerned with the metastable extension of the fluid bran

In the context of the hard-sphere phase diagram, one
see that the fundamental problem in creating metasta
dense systems is to ensure that the system is truly rand
Unfortunately, there is no perfect measure of order or dis
der in a system, and systems were generally thought to
disordered as long as the the radial distribution function
not begin to show clear signs associated with a fcc crys
However, we showed in previous work@10# that small

FIG. 1. Phase diagram for the hard-sphere system.
532 © 1998 The American Physical Society
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amounts of crystallization, which were imperceptible to t
radial distribution function, can indeed affect the physic
properties, such as pressure, in the system.

In order to quantify the degree of local order~disorder! in
the system, we borrowed the concept of an order param
Q6 from Steinhart, Nelson, and Ronchetti@11#. The order
parameterQ6 corresponds to a rotationally invariant avera
over all bonds, which is nonzero in the presence of any t
of crystallization, and zero for a completely disordered s
tem. By monitoring the behavior ofQ6 to ensure that no
crystallites were forming, we were able to both equilibra
our hard-sphere systems and be assured that they rem
random. We suspect that many previous studies that
tempted to produce random packings of spheres solely b
on the radial distribution function may well contain crysta
lites.

Using the aforementioned concept of an order param
to characterize hard-sphere systems, we found a pre
quantitative means of creating dense random hard-sph
systems that correspond to the metastable amorphous br
of the phase diagram@10#, which heretofore had been lack
ing. We were then able to establish a number of new res
related to dense metastable hard-sphere systems. Thes
sults include precise values of the pressure along the bra
a precise value of random close packingfc ('0.644), and a
lack of the existence of a thermodynamic glass transition

In this paper, we use the same techniques to create d
random hard-sphere systems and measure key statis
properties of these systems. First, we calculate the v
nearest-neighbor distribution functionsEV(r ) and HV(r ).
These two functions describe the geometry of the cavitie
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the hard-sphere system and were originally used in sca
particle theory to determine the system thermodynam
@12#. UsingHV(r ), we will also calculate the mean pore siz
^d& and associated fluctuations. Such pore length scales
termine transport properties of the systems, such as the m
survival time of Brownian particles diffusing in a system
traps@13#. We emphasize that this, to our knowledge, is t
first computer simulation of these quantities above the fre
ing point, along the metastable branch. Finally, we will c
culate the first and second moments of the particle near
neighbor functions as well as an effective mean coordina
number associated with these dense packings. The l
quantities are key in characterizing the system as it
proaches the RCP state. We will also use our simulat
results to compare to previous theoretical predictions@9,14#.

In Sec. II we precisely define the void nearest-neighb
quantitiesEV(r ) and HV(r ), and calculate them as well a
lower-order moments using computer-simulation techniqu
They are then compared to theoretical expressions. We
cuss and compute the particle nearest-neighbor statistic
Sec. III, such as the mean nearest-neighbor distance an
sociated variance, and the mean coordination number.
nally, in Sec. IV we make concluding remarks.

II. VOID STATISTICS

In what follows, we consider a statistically isotropic di
tribution of identical hard spheres of diameters. Let f rep-
resent the volume fraction of the spheres. The void near
neighbor quantitiesHV(r ) andEV(r ) have been extensively
studied@12,14# and are defined as follows:
HV~r !dr5probability that at an arbitrary point in the system, the center of the nearest particle,

lies at a distance betweenr and r 1dr. ~1!

EV~r !5probability of finding a region that is a circular cavity of radius

r ~centered at some arbitrary point!, empty of disk centers. ~2!
,

ve,
The quantityHV(r ) can be interpreted as being the interf
cial area per unit volume of a system of possibly overlapp
spheres of radiusr centered at each of the actual sphe
centers. Similarly,EV(r ) has the interpretation of the volum
fraction of space occupied by a system of possibly overl
ping spheres of radiusr centered at each of the actual sphe
centers. The pore-size distributionP(d) has been defined in
terms ofHV @13# according to the relation

P~d!5
HV~d2s/2!

12f
. ~3!

Then, the mean pore-size distribution^d&, and higher-order
moments can be defined by

^dn&5E dnP~d!dd. ~4!
g

-

The two quantitiesHV(r ) andEV(r ) are not independent
but are related by the expression

EV~r !512E
0

r

HV~x!dx. ~5!

It is easy to see, from the physical definitions given abo
that

EV~r !512r
4pr

3
, 0<r<s/2, ~6!

and

HV~r !5r4pr 2, 0<r<s/2, ~7!

wherer is the number density of particles.
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Torquato@9# has obtained an accurate analytical appro
mation for the intimately related conditional neare
neighbor functionGV(r ) @14# for volume fractions up to the
freezing point:

GV~x!5a01
a1

x
1

a2

x2
, ~8!

where

a05
11f1f22f3

~12f!3
, ~9!

a15
f~3f224f23!

2~12f!3
, ~10!

a25
f2~22f!

2~12f!3
. ~11!

FIG. 2. Comparison of the simulations ofEV(r ) andHV(r ) to
the theoretical expressions~12! and ~13! for f50.56.

FIG. 3. Comparison of the simulations ofEV(r ) andHV(r ) vs
scaled distancer /s to the theoretical expressions~12! and~13! for
f50.60.
-
-and x5r /s. The corresponding expressions forEV(x) and
HV(x), using the exact interrelations@14#, are given by

EV~x!5~12f!exp@2f~8a0x3112a1x2124a2x1a3!#,
~12!

HV~x!524f~12f!~a0x21a1x1a2!exp@2f~8a0x3

112a1x2124a2x1a3!#, ~13!

where

a352~a013a1112a2!. ~14!

As observed by Torquato@9#, the void nearest-neighbo
functions are fundamentally different than the ‘‘particle
nearest-neighbor functions~described in the next section!
since the former, unlike the latter, do not vanish or diverge
the RCP state. This implies that the functional nature of
particle quantities below and above the freezing density m
be different@9#. Since the void quantities are nonsingular

FIG. 4. Comparison of the simulations ofEV(r ) andHV(r ) vs
scaled distancer /s to the theoretical expressions~12! and~13! for
f50.63.

FIG. 5. Comparison of the simulations of the dimensionle
mean pore sizêd&/s vs scaled distancer /s to the theoretical
expression~4!, with n51 andHV given by Eq.~13!, for several
values off.
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RCP, it seems reasonable that by analytically continuing
expressions~8!, ~12!, and~13! above the freezing point, the
may provide useful estimates of the void quantities along
metastable branch. This ansatz will be tested against
simulation results.

Simulations to determineEV(r ) and HV(r ) were per-
formed at various volume fractions between the freez
point (f f50.494) and random close packing (fc50.644)
by creating the systems using the techniques described in
earlier papers@10#. The volume and area for various valu
of r was then determined using the algorithm specified
Dodd and Theodorou@15#, with minor performance modifi-
cations. Each simulation was performed on 2000-part
systems using periodic boundary conditions.

The resulting plots ofEV(r ) and HV(r ) compared to
theory are shown in Figs. 2–4. The first plot, which depi
the results forf50.56, shows extremely close agreeme
with theory. However, the data in Fig. 3 also shows ve
good agreement with theory at the higher value off50.60.

FIG. 6. Comparison of the simulations of the dimensionless s
ond moment of the pore-size distribution^d2&/s2 to the theoretical
expression~4!, with n52 andHV given by Eq.~13!, for several
values off.
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Figure 4 shows that even atf50.63, a value very close to
random close packing, the theoretical expressions do
break down significantly, in contrast to previous predictio

The data forHV(r ) were used to calculate the pore-si
distribution P(d), and the mean pore sizêd& and mean
pore-size fluctuationŝd2& were calculated fromP(d). The
momentŝ d& and ^d2& are plotted in Figs. 5 and 6, respe
tively, and are compared to the theoretical predictions
computed from Eqs.~3!, ~4!, and ~13!. Noting the scales of
the figures, the theoretical predictions are seen to be in
cellent agreement with the simulation data.

III. PARTICLE NEAREST-NEIGHBOR STATISTICS

The particle nearest-neighbor quantitiesHP(r ) andEP(r )
are similar to the void nearest-neighbor quantities, but
stead of the reference point as an arbitrary point in the s
tem, it is a particle center@14#. Specifically,HP(r ) is defined
as

c- FIG. 7. Comparison of the simulations of the dimensionle
mean nearest-neighbor distance^r &/s to the theoretical expressio
~16!, with n51 andHP given by Eq.~17!, for several values off.
HP~r !dr5probability that at an arbitrary particle center in the system,

the center of the nearest particle, lies at a distance betweenr and r 1dr. ~15!
This is just the distribution of nearest-neighbor distanc
From this quantity, one can define the mean nearest-neig
distancê r & and its higher moments as

^r n&5E
0

`

r nHP~r !dr. ~16!

A theoretical approximation forHP(r ) from the freezing
point f f to RCPfc was explicitly given by Torquato in Eq
~43! of Ref. @9#, which states that
s.
or

HP~r !524f~a0x21a1x1a2!exp$2f@8a0~x321!

112a1~x221!124a2~x21!#% ~x>1!, ~17!

where

a05114fgf~1!
~fc2f f !

~fc2f!
, ~18!

a15
3f24

2~12f!
12~123f!gf~1!

~fc2f f !

~fc2f!
, ~19!
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a25
22f

2~12f!
1~2f21!gf~1!

~fc2f f !

~fc2f!
, ~20!

and gf(1)5(12f f /2)/(12f f)
3 denotes the contact valu

of the radial distribution function at the freezing packin
fraction f f50.494.

In general, it is much more difficult to get the entire di
tribution of particle nearest-neighbor quantities than the v
nearest-neighbor quantities. This is due to the fact that
sampling for the particle quantities is limited to the numb
of particles in your system, while there are effectively
infinite number of void points to sample from. Because
this, we will concentrate on the first and second moment
HP(r ), and not the entire function.

In Fig. 7 we compare the mean nearest-neighbor dista
^r &, obtained from our simulations to the one computed fr
Eqs.~16! and~17! for various values of the volume fractio
f. Here we see that the values lie very close to the appr
mation given by Eq.~16! with n51. Similarly, Fig. 8 gives
corresponding results for the second moment^r 2&. The
agreement with theory@Eq. ~16! with n52 and Eq.~17!# is
also quite good.

For a hard-sphere system in equilibrium, the coordinat
number~average number of interparticle contacts! is strictly
zero except at the RCP state. Therefore, we instead compu
the mean number of neighborsNn(r ), whereNn(r ) is de-
fined as the mean number of sphere centerslocated within a
distance r from a random sphere center. Even though

FIG. 8. Comparison of the simulations of the dimensionless s
ond moment̂ r 2&/s2 to the theoretical expression~16!, with n52
andHP given by Eq.~17!, for several values off.
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Nn(s)50 for all values used in this simulation, we can pl
Nn(r ) for values close tos to get an idea of what a reason
able value for the coordination number should be. Figur
shows the results forf50.63, very close to RCP. We see
very sharp rise up to a value of approximately six, and th
a slow rise to slightly higher values. This implies that ea
particle has six neighbors a very short distance away~note
the scale in Fig. 9! corresponding to an approximate coord
nation number of six. Asf→fc , it is expected thatNn(r )
will plateau even faster after the initial steep rise. It is w
known experimentally that the coordination number
random-sphere packings is approximately six@16#.

IV. CONCLUSIONS

Theoretical predictions for nearest-neighbor void and p
ticle statistics along the metastable amorphous branch
shown to be very accurate when compared to comp
simulations, even at values close to RCP. This is in cont
with many previous theoretical predictions of hard-sph
systems that tend to break down at higher densities. We
that the void statistics, while somewhat more geometrica
complicated than the particle statistics, are easier to mea
than the particle quantities. Finally, we have shown that
dense random hard-sphere systems approach the RCP
the coordination number tends toward a limiting value
approximately six, consistent with experimental measu
ments on random-sphere packings.

c-
FIG. 9. Coordination number~average number of neighborin

sphere centers! as a function of distance forf50.63. Note the
sharp change in the behavior of the function at a point correspo
ing to about six neighbors.
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